On the first eigenvalue of the Laplacian for polygons

Emanuel Indrei
Department of Mathematics and Statistics, SHSU

Abstract

In 1947, Polya proved that if $n=3,4$ the regular polygon P_{n} minimizes the principal frequency of an n-gon with given area and suggested that the same holds for larger values of n. In 1951, Polya and Szego discussed the possibility of counterexamples. Recently, I constructed explicit $(2 n-4)$-dimensional polygonal manifolds and proved for n large that there exists an explicit non-empty set A_{n} such that P_{n} has the smallest principal frequency among n-gons in A_{n}. The techniques involve a partial symmetrization, tensor calculus, the spectral theory of circulant matrices, and $W^{2, p}$ estimates. An application is given in the context of electron bubbles.

